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SUMMARY

In this paper, the problems of stochastic disturbance attenuation and asymptotic stabilization via output
feedback are investigated for a class of stochastic nonlinear systems with linearly bounded unmeasurable
states. For the first problem, under the condition that the stochastic inverse dynamics are generalized
stochastic input-to-state stable, a linear output-feedback controller is explicitly constructed to make the
closed-loop system noise-to-state stable. For the second problem, under the conditions that the stochastic
inverse dynamics are stochastic input-to-state stable and the intensity of noise is known to be a unit matrix,
a linear output-feedback controller is explicitly constructed to make the closed-loop system globally
asymptotically stable in probability. Using a feedback domination design method, we construct these two
controllers in a unified way. Copyright © 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The design of global stabilization controller for stochastic nonlinear systems has been an active
area of research in recent years ([1-3] and the references therein). Since Deng and Krsti¢ [4]
firstly gave a result of output-feedback stabilization, the output-feedback controller design for
stochastic nonlinear systems has received more intensive investigation [2, 5-9], which is because
not only in general, the design of output-feedback control is more difficult and challenging than
that of full state-feedback control, but also the output-feedback control is more practical in
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engineering. However, these known results are limited to the systems in output-feedback form,
in which the nonlinear terms only depend on the measured output. For the deterministic
systems, in [10] counterexamples were given indicating global stabilization of the nonlinear
systems in general low-triangular form via output feedback is usually impossible without
introducing extra growth conditions on the unmeasurable states of the system. Since then, much
research work has been focused on the output-feedback global stabilization of nonlinear systems
under various structure or growth conditions [11-16]. Recently, there are some results of
output-feedback control for the stochastic nonlinear systems in which nonlinear terms are
dependent on the output and unmeasurable inverse dynamics or unmodeled dynamics [3, 17, 18].
But for stochastic nonlinear systems dependent on general unmeasurable states, to the authors’
knowledge, there is no related result.

In this paper, we consider disturbance attenuation and asymptotic stabilization via output
feedback for a class of stochastic nonlinear systems in which drift and diffusion terms depend on
unmeasurable states besides the output and unmeasurable inverse dynamics. Firstly, to deal
with stochastic inverse dynamics, two stability concepts are introduced: stochastic input-to-state
stable (SISS) with respect to the stochastic input and generalized SISS (GSISS) with respect to
the stochastic input and unknown covariance of noise. Under the assumption that the inverse
dynamics are GSISS, a linear output-feedback controller is explicitly constructed to make the
closed-loop system noise-to-state stable; when the intensity of noise is known to be unit matrix,
under the assumption that the inverse dynamics are SISS, a linear output-feedback controller is
explicitly constructed to make the closed-loop system globally asymptotically stable in
probability. Based on a feedback domination design method, a unified design procedure for
the above two controllers is supplied.

The remainder of the paper is organized as follows. Section 2 provides some notations and
preliminaries. Section 3 describes the problem to be investigated. Section 4 presents the design of
high gain observer. The output-feedback control design procedure is given in Section 5. Stability
analysis of the closed-loop system in question is given in Section 6. Section 7 contains some
concluding remarks.

2. NOTATIONS AND PRELIMINARIES

The following notations will be used throughout this paper. R, denotes the set of all
nonnegative real numbers; R" denotes the real n-dimensional space; R"*" denotes the real n x r
matrix space. For a given vector or matrix X, XT denotes its transpose; Tr(X) denotes its trace
when X is square; |X| denotes the Euclidean norm of a vector X; ||X|| denotes the Frobenius
norm of matrix X defined by || X|| = \/Tr(XTX); Anin(X) and Ay (X) denote the minimal and
maximal eigenvalue of symmetric real matrix X, respectively; " denotes the set of all functions
with continuous ith partial derivatives; > (R" x R,;R,) denotes the family of all nonnegative
functions V(x,7) on R" x R, which are 4? in x and %" in #; #" denotes the set of all functions:
R, — R, which are continuous, strictly increasing and vanish at zero; # o, denotes the set of
all functions which are of class #" and unbounded; .#".# denotes the set of all functions f(s, 7):
R x Ry — R, which is of #” for each fixed ¢, and decreases to zero as t — oo for each fixed s.
For a given stochastic system

dx = (f(x, 1) + g(x, Hu) dt + h(x, 1) dw
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define a differential operator . as follows:

2
LV = aa—lt/—i-g—zf(x, ) +2—I;g(x, t)u+%Tr{hT(x, z)%/h(x, z)}
where V(x, 1) € €*>'(R" x Ry;R,); x € R" is the state, u € R is the control input; f € R", g € R"
and h € R™" are locally Lipschitz functions; w is an r-dimensional standard Brownian motion
defined on a complete probability space (Q, %, P) with Q being a sample space, & being a
o-field, and P being the probability measure.

For control-free stochastic nonlinear systems of the form:

dx = f(x,t)dt + h(x,t)dw (1)
the following stability notions introduced in [19] will be used in the paper.

Definition 1

For system (1) with f(0,7) =0 and £(0,7) =0, the solution x(z) =0 is said to be globally
asymptotically stable in probability (GASIiP), if for any given ¢ € (0, 1), there exists a function
B, ) € A &L such that

PUXI<B(Ixol, 0} =1 — ¢, Vi20, Vx(0) = xo € R"\{0)
The following theorem gives sufficient conditions on the stability introduced above.

Theorem 1 (Krsti¢ and Deng [19])

For system (1), assume that f(x, 7), h(x, ¢) are locally Lipschitz in x uniformly in ¢. If there exists
a function V(x, 1) € €*'(R" x Ry;R,), which is positive definite and radially unbounded in
x uniformly in #; a constant ¢>0, and a positive definite function #(x) such that

LV —Wkx)+c
then

(a) there exists an almost surely unique solution on [0, c0);
(b) the zero solution of system (1) is GASiP, when f(0,7) = 0,/4(0,7) = 0 and ¢ = 0.

Consider the following stochastic nonlinear systems:
dx = f(x,v, 1) dt + g(x, v, ))Z() dw )

where x € R" is the state, v=1v(x,7): R" x R, — R" is the input, £ : R, — R™" is a Borel
bounded measurable function and the matrix Z(7) is nonnegative definite for each 1>0, w is an
r-dimensional standard Brownian motion defined on the complete probability space (Q, %,
{Z )0, P) With {F},5, being a filtration; f: R" x R”" x Ry - R" and g: R" x R" x R} —
R™" are assumed to be locally Lipschitz in (x, v) uniformly in ¢. Assume that for every initial
condition x(0) = xy, each essentially bounded measurable input v and Borel bounded
measurable function X(z), system (2) has a unique solution x(¢) on [0, c0) which is & ,-adapted,
t-continuous, and measurable with respect to # x %, where % denotes the Borel g-algebra of R
[20]. Then, we have the following definitions.
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Definition 2
System (2) with X(z) = I is SISS if for any given ¢ € (0, 1), there exists a %% function f(-,-) and
a & function y(-) such that

P{IX(1)|<[>’(|Xo|,f) +V< sup ||vsll>}>1 —¢ Vt=0, Vxo € R"\{0} 3)

0<s<t
where ||vy|| = inf oo pis)=0 SUP{|V(X(®, 5), 5)| : @ € Q\oA}.

Definition 3
System (2) is GSISS if for any given ¢ € (0,1), there exists a # "% function f(-,) and %
functions y(-) and y,,(-) such that

P{|x(r)|</3(|xo|,z>+y( sup ||v5||) m( sup ||z(s>2<s)T||)}>1—e, Vi>0, Vxo € R (0)

0<s<t 0<s<t

Remark 1

Different from all the existing concepts characterizing the SISS behavior, here the input v in
system (2) is assumed to be a function of 7 and x, precisely, v = v(x(w, t), ), and can be regarded
as a Markov control input, which ensures the corresponding solution process x(w, ¢) is an It
diffusion, and hence, a Markov process [21]. This kind of input is the most general one for the
systems described by Ito diffusion stochastic differential equations, for which global control
design has been a hot topic of research in recent years (see [2, 22] and the references therein). The
above definitions are generalization of NSS [19]; and when v(x, f) = v(¢) is deterministic and
2(t) = I, Definition 2 is the SISS given in [23].

Remark 2
In system (2), X(¢) indicates the intensity of the system noise. In practical systems, X(¢) exists
widely. For instance, in the model of stock price

dp(1) = p()[b(r) dr + Z(2) dw(2)]

p(t) = [p1(0), . .., pa(1)]T where p;(¢) is the price per share of the ith stock at time 7, and 2(7) =
(0;i(1)) where oy is called ‘volatility coeflicient” and models the instantaneous intensity with
which the jth source of uncertainty influences the price of the ith stock at time 7 (see e.g. [24, 25]).

The following theorem and corollary provide sufficient conditions on GSISS and SISS,
respectively.

Theorem 2
For system (2), assume that f(x, v, £), g(x, v, f) are locally Lipschitz in (x, v) uniformly in ¢. If there
exists a function V(x,7) € >'(R" x R;;R,) and .# o, functions oy, y,a, 7, x,, such that

ar([x) < V(x, 1) <on(lx]) 4)
T
LV < —allx) + (10D + %, (1IZZT]) (5)
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (in press)
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then,

(a) system (2) is GSISS;
(b) if v =0, system (2) is NSS.

Proof
See Appendix A. O

Similar to the proof of Theorem 2, we can obtain the following result.

Corollary 1

For system (2) with X(¢) = I, assume that f(x,v,7),g(x,v,t) are locally Lipschitz in (x,v)
uniformly in 7. If there exists a function V(x,7) € €>'(R" x Ry;R,) and # » functions o/, a,
o,y such that

a(lx) < Vix, 1) <oo(|x])
LV< —allx]) + x(Iv])
then system (2) is SISS.

Remark 3

From Theorem 2 and Corollary 1, it can be seen that the sufficient conditions of (generalized)
SISS are similar to their deterministic counterparts [11, 14,26]. But the (generalized) SISS is
applicable for more general inputs, including the general deterministic input v(¢), the intensity
2(t) of the noise, or even the stochastic process input v(x, f). In addition, its analysis is more
complex and difficult, which can be seen from the proof of Theorem 2 and the following
problems to be investigated.

3. PROBLEM FORMULATION

Consider the following stochastic system:

dx: = fo(xz, y, ) dr + go(xz, y, )Z(2) dw (6)

dxp = (x2 + fi(x1, xz, ) dr + g1 (x1, x2, NZ(r) dw

dx,— = (xn +fnfl(xn71’ Xz, [) dr + gnfl(xnfla Xz, Z)Z(I) dw
dx, = u + fu(X,, X2, 1) dt + g,(%,, X2, )Z(2) dw
y =X @)
where x = [x,... ,xn]T is the state, u € R is the control input, y € R is the measured output;

x. € R" is the state of the unmeasurable inverse dynamics; )Ei:[xl,...,xi]T, fi g, =
0,...,n, are locally Lipschitz in the first two arguments uniformly in ¢ and satisfy
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£:0,0,1) = 0,g:(0,0,7) =0; £ : R, — R™" is a Borel bounded measurable function and X(¢) is
nonnegative definite for each #>0.

Consider the following two groups of assumptions. The first group is for the disturbance
attenuation problem, while the second one is for the asymptotic stabilization problem.

Al: There exist known positive constants Cr, C,, and Ky such that forany i=1,...,n,

| 1%, %2 OIS Cr(Ixt| + - -+ + [x:]) + Kr|x:|
|gi(Xi, X2, ] < Cg

A2: There exist known positive constants o, y, 7, and a function V.(x.,7) € €>'(R" x
R, ;R,), which is positive definite and radially unbounded in x, uniformly in ¢, such that

LV< —alx + 7P+ 9, 2P ®)
Bl: 2(H) = 1.
B2: There exist known positive constants Cy, Cg, Ky, and K, such that for any i =1,...,n,
[fi(%i, X2, DI < Cr(Ix1]| + - -+ + |xi]) + Ky |x:|
lgi(%:, x-, | < Cg(|xl| + -+ X))+ Kg|xz|

B3: There exist known positive constants «, y and a function V.(x.,7) € €*'(R" x Ry;R,),
which is positive definite and radially unbounded in x. uniformly in ¢, such that

LV.< —alx P+l )

In this paper, the following two problems are to be solved.

3.1. Disturbance attenuation problem

For system (6)—(7), under Assumptions Al and A2, the control objective is to design a smooth
dynamic output-feedback controller

1 =o(%)
u=pux,») (10)

such that the closed-loop system consisting of (6), (7) and (10) is stochastic disturbance
attenuation in the NSS sense [1].

3.2. Asymptotic stabilization problem

For system (6)—(7), under Assumptions B1-B3, the control objective is to design a smooth
dynamic output-feedback controller (10) such that the closed-loop system consisting of (6), (7)
and (10) is GASIP.

Remark 4

(1) Due to the existence of unmeasurable states x, ..., x; in nonlinear terms f; and unknown
covariance of the noise, the boundedness of the diffusion terms g; is assumed in
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Assumption Al. This technical assumption, similar to that in [7], is required to bound the
estimate error by appropriate terms, which will be clear later.

(i) By Theorem 2 and Assumption A2, the inverse dynamic (6) is GSISS. By Corollary 1 and
Assumption B3, the inverse dynamic (6) is SISS with respect to the virtual input y. For the
unmeasurable states of system (7) is linearly bounded, here these two stabilities are
assumed to be satisfied with quadratic gain functions as in [14].

(iii)) From Assumptions Al and B2, system (7) is assumed to be dominated by a general
triangular system with linear growth nonlinear terms or bounded diffusion terms. It
should be pointed that this class of systems represents an important class of stochastic
nonlinear systems which are not covered by the previous work.

4. HIGH-GAIN OBSERVER DESIGN

First, we introduce a state-estimator for subsystem (7):

X1 =%+ Laj(y — %)

)énfl = )en + Ln_lanfl(y - )21)

)én =M+L"dn(y—>31) (11)
where L>1 is a gain parameter to be determined later, and ¢; > 0,i = 1,...,n, are real numbers
such that the polynomial p(s) = s" 4+ a;s"~! + - - - + a, is Hurwitz.

Let g =(x;—X)/L~i=1,....,nand ¢ = [ey, .. .,SH]T. Then we obtain the following error
dynamics:
de =[LAe + F,]dt+ G, Zdw (12)
where
[ A [ a1 ]
—a
lf 1
I, I 2 ng
A = b FS = b GF =
—dp—1
—a, 0 ---0 | 1
_Lnflf”_ _Lnflg"_

For the polynomial p(s) = s" + a;s"' 4+ --- 4+ a, is designed to be Hurwitz, there exists a
positive-definite matrix P such that

AP+ PA= -1
In the following, we give error dynamics analysis for the two problems mentioned above.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (in press)
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4.1. Error dynamics analysis of disturbance attenuation problem

By Assumption Al and L>1, we have the following estimates:

n

IFP =Y

i=1

1
T1/i

2 n 2
1
/i S Z { Cr(lxtl + -+ |xil) + Kplx:|

i—1
i=1 L

n 1 2
< 221 [Ll'l Cf(|x1| + -+ |Xl|):| +2HK?|XZ|2

2
< 2nC; <|x1| +'LLZ'+ S L'fﬂ) +2nK7 x| (13)
n 1 2
1G> = T8 <nC; (14)
i=1

Let V,(¢) = 6" Pe, where 6 > 0 is a parameter to be specified later. Then, by (12)—(14) and It6
formula, we obtain

LV, =L (ATP + PA)e + 266" PF, + 6 Tr(X(1)' GT PG, X(1))
< = SLIel* + S[le" PI” + |F,] + 6/max(P) G P [Z(0)] P

2
X X
< —5L|s|2+5||P||2|8|2+2n5C}(|x1|+%+-~+ | i') +62nK7 x|

+ 0 max(PINCH I Z(0)|

x| xal )2
—S(L— IPIP)el + znacg(|xl| ML LH)

+ 208 KF |- + imax(PInCLI 2 (1)

Noticing |(1/L=Yx;| <|(1/L71%| + |&i], we have

A ~ 2
X X,
2V, < —5(L—||P||2)|s|2+cel<|al|+~--+|an|+|ae1|+'Lz'+~--+L',£'l> A T)
A A 2
X X
< = O(L = [IPIP)el* + 2Cer(ler] + -+ + leal)” + 2Ces <|)21|+'L—2'+~-+£nf'1> +A1(x, Z)
< 15 2 2 2 1ol %
< =[O = NIPIP) = 2nCallel + 2Can( 191 + 5+ + 515 ) + A, 3) (15)

where C,| = 2n5C?, A(x.,2) = 2n§Kfz»|x:|2 + (5)LmaX(P)nC§||E||2.

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (in press)
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4.2. Error dynamics analysis of asymptotic stabilization problem

By Assumptions Bl and B2 and L>1, we have the following estimates:

|X2| |xn|
|G, <2nC; (|x I+ 4 o

2
) +2nK7|x|? (16)

Similar to the above subsection, let V,(¢) = de" Pe. Then, by (12), (13), (16) and |(1/L~1)x;| <
|(1/L=1%;] + |&;], we obtain

LV, < —[5(L—||P||2)—2nC€2]|8|2+2nCez<|)31| +7|ZZ| +eot

) F A (1)
where CeZ = 21’15((?} + }vmax(P)Cg): AZ(xz) = zné(Kjg + )ﬂnax(P)K;Nlez-

Remark 5

Here, similar to the deterministic case, we design a high-gain observer (11) with a to-be-deter-
mined gain parameter L for partially unmeasurable states. But due to the existence of the noise,
the error dynamic analysis is more complex than the deterministic case. In the next section, we
will design the linear output-feedback controller and gain parameter L simultaneously.

5. OUTPUT-FEEDBACK CONTROLLER DESIGN

In this section, we supply a unified control design procedure for the disturbance attenuation and
asymptotic stabilization problems by using feedback domination design method. In the sequel,
C, will be used to denote C,; or C,, and A denotes A or A,, accordingly.

Step I: Let z; = %y and V; = V, +13}. Then, by (11) and (15) or (17), we have

o2
LV < _[5(L_||P||2)—2nCe]|8|2+2nCe(|>21|2+| % T | X, )

72 1212
+ A+ X(% + Laje) (18)
Defining z; = X, — ¢;(*;) and noticing that
Xi1Lajegr< L llxl |2 + Ls%
2nC,|%1 1> < 2nC,L|% |2, x122\41LZz + L%
2nce|%|2 =2nC, Eat O fé(xm <4nc, 217 + il

by (18) we have

2 a2
LVi< —[8(L —||P|)?) = 2nC, — L]je> 4 2nC, (' a2l +ﬂ+---+ il >

L6 2n=2
5 oo Lai 1
+ X1 q51+2nC€Lx1+Tx1+Lx1 +4nC, —+4 C_+HZZ+A (19)
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (in press)
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Different from the control design of the systems in output-feedback form, here the virtual
control ¢, appears as a disturbance in the term 4nC€q5% /L?, which can be canceled by properly
designing the parameter L.
Define the virtual control law
(X)) = —Lb1 % (20)

where b; = 2n — 1 +2nC, + a? /4 + 1. Then it follows from (19) that

|31 | 154l |52
LVi< ~[5(L— ||PIP) — 2nC. — Lljef + 2n c( I
a2 CE 2 2.0 1 )
- (2]’1 - I)LXI + 5 2 +4anb1X1 +E22 + A
16317 %) %
—O(L — IPIP) — 21C, — Lljel? + 2nC, (L+%+‘“+LG :
4nC, 1

—[2nL—4anbf— ’zz 2+4L22+A 1)

Step k (k=2,...,n—1): At this step, we can obtain a property similar to (21), which is
presented by the following lemma.

Lemma 1

For every k=1,. — 1, there exist smooth functions ¢;,(1<i<k) such that (;S(O)_O
and along the solutlons of (11) and (12), the Lyapunov function candidate V; = V| + Zl 5
(1/2L20=D)22 satisfies

.2 22
PV < —[5(L—||P||2)—2nCe—kL]|8|2+2nCe<|xk+2| by Tl )

L2k+2 2L27172
S
— (2nL — 4nC,b? — kL)z> — 22: Tl =L - 4nC b1z
J=
4nC, 1
T Zip F 412k~ AT T TA (22)
where
Zj :)ei_(,bjfl(}i—l)’ i:27"'3k9 )en-&-l =Uu, Zn+l :0
¢y = — Lbi1zi-
Ziog =X 1 4+ LbiaXi o + L*bi b 3% 3+ -+ L2 abi 3 --- b1 %
1 & dii_ .
b,—=n+4nCe+Z+?’+T”+m+ 4 Lydi+1, i=2,...,n—1
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (in press)
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di=a;+biy---bray+biy---brar+ -+ bi_1a;_

din = —biy---bib
dy':bi_y“bb 1 —bi_1- bbj, 2<j<i—1
dii =bi
Proof
See Appendix B. O
Using the ind argument step by step, at the nth step, by the foot note appearing in

Appendix B on pdge 21, one can design the control law
u= — Lbnzn = _Lbn()en + Lbn—l()en—l + 4+ LbZ()e2 + Lbl)el) o )

= - Lbn)en - L2bnbn,1)2n,1 — Lnbnbnflbth ce bl)el (23)
h
where 1 d’21 d’% d,f”_]
bn—n+4nC +4+4+4++ ’4 +dnn

In this case, we have

LV, < —[8(L —||P|]*) = 2nC, — nL)|e|* — (nL — 4nC,b?)z?

1
=1 %jL — 4nCbjlz} - nL“"zﬁEj @4

n—

~
[|
N

6. STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM

6.1. Disturbance attenuation problem
By (24) and the definitions of C, and A (with respect to Assumption Al), we have
LVu< —[8(L = ||PII) = 2nCor — nL]e|* + 2n0K7 x| + 0 Zmax(PInCL || ()]

n—1
— (nL — 4nC, b))z — Z L2/ [0+ ;)L 4nC,b7)z? — nL> "z (25)

Jj=
Consider the following Lyapunov function:

+ €
Wi(x:, xn) =V,+ QI

V.
where g = 2n5KJ3,e > (. Then, by (8), (25) and |y|> = |x1 + &P <2|%117 + 2]&1 %, we have
q1+¢

2 2 2 2
SWI< = cilef — ez} — ZM +plIEIP = el + =7yl
j=2
n ql+ CI1
2 2 2 2
< —alef - =Y 47 —duP 42852 PTG L pEiP (26)
= *
Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (in press)
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where )
c1 =0(L —||P||") = 2nC,; — nL

¢ =nlL — 4nC€1b%

) 1 .

by =gy UL = 4nCabj), j=2,...,n—1
;Ln :l’lL372n
Ce1 =2n5C;

qi +¢
o

P =0max(PnC; + T

Choose the design parameters L>1, 0 >0 and ¢ > 0 such that

6’)}>0

T =
Then, it follows from (26) that

n
I —enle =Y iz — elx P+ plIEIP
=1

Noticing that (1/\/7)||Z)||2 <|IZXT|<||Z]%, by Theorem 2, we have the following result.

Theorem 3
For system (6)—(7), suppose Assumptions Al and A2 hold. Then under control law (23), the
closed-loop system is stochastic disturbance attenuation in the NSS sense.

6.2. Asymptotic stabilization problem

By (24) and the definitions of C, and A (with respect to Assumptions Bl and B2), we have
LVa< —[8(L —||PII) = 2nCey — nL)|el + 2n8(K} + Amax(P)K;)|x-I?

n—1

. B .
— (nL — 4nC,b%)z% — Z T U+ DL - 4nC.b7)z} — nL> 'z, (27)

j=2
Consider the following Lyapunov function:
= +c
Wa(xz, Xu) = Vi + = o V.
where ¢y = 2n0(K} + Zmax(P)K;), € > 0. Then, similar to (26), by (9) and (27) we have

n

2 2 7.2 2 Pte o
LWr< —cilel —szl—ZAjZ_/—€|XZ| +=

Jj=2
n
g +e g +e¢
< —alel’ — ez =Y Az —ex + 25—z + 2 ——lef (28)
- oo o o
Jj=2
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where
e1 =0(L — ||P|*) = 2nC,y — nL

Cy = nlL — 4an2b%

1 .
m[]L—4nc€2b}], j=2...,n—1

/111 — nL3—2/1

Cor = 2n5(Cf2 + )vmax(P)Cé)

)=

Choose the design parameters L>1, 0 > 0 and ¢ > 0 such that

g+ ¢
s
o

>0

C1]1 = (1 -2

4

— H 2
i =35 UL = 4nCab]> 0

A =Cz—2q27ﬂy>0

Then, by (28) we have

n
LWr< —cplel* — Ziﬂ? — el
Jj=1

Thus, by Theorem 1 we have the following results.

Theorem 4
For system (6)—(7), suppose Assumptions B1-B3 hold. Then under control law (23), the closed-
loop system has an almost surely unique solution on [0, 00), and its zero solution is GASIiP.

Remark 6

Different from the previous work about output-feedback control for stochastic nonlinear
systems, in this paper, a quadratic Lyapunov function is adopted instead of a locally quadratic
or quartic function, which simplifies the controller design greatly.

Remark 7
Unlike linear time-invariant systems, here separation principle does not hold due to essential
nonlinearity of the system, and the controller design is more difficult than that in linear cases.

7. CONCLUSION

In this paper, the problems of stochastic disturbance attenuation and asymptotic stabilization
via output feedback have been studied for a class of stochastic nonlinear systems with linearly
bounded unmeasurable states. The methodology previously developed for deterministic systems
has been generalized to stochastic ones. Different from the previous work about output-
feedback control for stochastic nonlinear systems, here a quadratic Lyapunov function was

Copyright © 2007 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (in press)
DOI: 10.1002/rnc



S.J. LIU AND J. F. ZHANG

adopted instead of a locally quadratic or quartic function. Under the assumption that the
inverse dynamics are GSISS, a linear output-feedback controller was explicitly constructed to
make the closed-loop system noise-to-state stable. When the intensity of noise is known to be a
unit matrix, under the assumption that the inverse dynamics are SISS, a linear output-feedback
controller was explicitly constructed to make the closed-loop system globally asymptotically
stable in probability.

APPENDIX A: PROOF OF THEOREM 2

Conclusion (b) comes from conclusion (a) and the definition of NSS [19] directly. So, here it
suffices to show conclusion (a).

Let
#= {1 < drihilo) + dz, (sup IZOZOTD ) b o =\
>
where [|v]]o = sup, s l1v/ll = sup,~¢ infco piw)=o supilv(x(w, 1), )| : @ € A\A}, and d=1is a
constant. Define a sequence of stopping times {t;};:
T0 =0
inf{t>1: x(t) € B} if {t>19:x(t) € B}#0
T =
s} otherwise

inf{t> 191 : x(t) € #°Y if {t> 11 : x(f) € B} #0
T2i =

o0 otherwise

inf{r> 1y : x(t) € B}y if {t> 19 : x(1) € B} #0

Dit+1 =
i o0 otherwise
where i =1,2,... . Noticing that %#° is a closed set, for any >0 and any i=1,2,..., if
t € [t21, T2it 1], then x(¢) € #¢; and if t € (t2i11, T2i42), then x(¢) € 4.
We now complete the proof by considering the following two cases: xg € Z#°\{0} and x; €

2\{0}, respectively.

Case 1. xo € #°\{0}. In this case, for any ¢ € [0, 1], x(?) € %°.
By the definitions of ty; and 141, for any ¢ € [t2;,72i41], i =0,1,2,...,

01207 (@) + i (sup 1RO ) ) 207 (o) + i, (sup i0zOT) ) as
which together with (5) leads to

LVx(),)< — (1 - é) a(lx(r)]) a.s. (A1)
By (2) and 1t6 formula, we have

V(x(2),t) = V(x(0),0) + /0 t LV (x(s),s)ds + /o l % g(x(s), v(x(s), 5), $)Z(s) dw(s) (A2)
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and by [27, p. 72], for any t>0,i=0,1,2,...,

INT;

V(x(t A 12),t A t2) = V(x(0),0) + LV (x(s),s)ds
0

N /t/\‘rz; M (X(S), V(X(S); S), S)E(S) dW(S)
0

ox g
INT2i41
VXA Ty £ A Taigr) = V(x(0),0) + / LV(x(s),5)ds
0

N /t/\‘rzi+l wg(X(S)’ V(.X(S), s), S)Z(S) dW(S)
0 ox

From the above two equalities and Lemma 4.1 of Chapter 4 in [27], it follows that

V(X(2 A t2i41), £ A Taig1) — VXA T2:), 1 A T2)

- / T v ds + / IOV ), w519, )08) ()

AT INT; ax

By Lemma 4.1 and Theorem 4.7 of Chapter 4 in [27], we obtain that

N OV (), )
ox &
INTY;

B /(rvrzi)/\‘f2i+1 oV (x(s), s)

(x(s), v(x(s), 5), $)Z(s) dw(s)

g(x(s), v(x(s), s), $)Z(s) dw(s) a.s.
ox

Noticing that
V(x(t A taig1), E A Taigr) — V(A t2:), £ A T25)

= V(x((t \ ‘Ezi) A T2[+]), (l \ ‘Ez,') AN T2[+]) — V(x(‘Ez,'), ‘62,‘)

and

IAT2i41 (IVT2)AT2141
/ LV(x(s),s)ds = / LV (x(s),s)ds
I3 T2i

AT

by (A3) and (A4), we have

(tVTa)AT2141
V(x((£V 121) A T2ig1), (1Y T20) A T2i1) =V (x(12:), T24) +/ LV (x(s),s)ds
T2i
(1VT2i)AT2141 6V(x(s),s)
L[,
ox

20

(A3)

(Ad)

(x(s), v(x(s), ), s)Z(s) dw(s) a.s.

According to the above equality and (Al), noticing that d>1, we obtain that the process

Vi= V(x((t V t21) A T2i41), (1 V T2;) A T2i+1)) is @ supermartingale.
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Thus, by [19, Theorem 3.3], for any ¢ € (0,1), there exists a class # %-function f;(-,-)
such that

Pllx((t v 1) Ataip )| < Billxey [, )} =1 =€ Vi=0, x(r2) € R"\{0}
In particular, for i = 0, if we write ; as 5, then

P{Ix(t ATl <P(Ixol, ) =1 =€ V=0, xo € R"\{0} (A3)

Now let us pay attention to x(¢ Vv 7). Define
o0 o0
o =@, v, 6=l t211]
i=0 i=1
Then, o/ N % = 0 and (11,00) = o/ U %, and hence,
E[V(X(l‘ \ ‘E]), v ‘C])] = E[V(X(l \Y% T]), v ‘E]) . 1{,6[0’“]}]
+ E[V(x(tV 11), 1V 11) - Ljie(n 00)]
= E[V(x(t1),71) - Lpepoop] + EV (X2 V 11), 1V 1) - Ljges)]
+ E[V(x(l \ ‘Cl), 1A% ‘El) . 1{1‘6‘6’}]

o0
= E[V(x(t1).71) - Luepoep] + D EIV (D), 1) - Teern ooy
i=0
o0

+ Y EWV(0), ) - Do) (A6)

i=1
Since Vj = V(x((tV t21) A 12i41), (t V T2i) A T2i41) 1S @ supermartingale, we have
E[V(x((1 V t21) A T2ig1), (1 V 120) A T2i0 )| < E[V(X(72:), 721)] (A7)
By the continuity of the trajectory, x(ty;) and x(t2;41) lie on the boundary of the set 4, i.e.
X(21) = x(t2i11) = o0~ Hdy (Voo + d7,(SUP, I1Z()Z(2)"]])) is a constant. Hence, we have
E[V(x(t1),71) - Lepepl < Pir € [0, 111} [Oﬂz (06_' (dx(l Wlloo) + dxy (Sulg IIZ(Z)Z(I)TII> ))] (A8)
>

and by (A7) and (4),

E[V(x(6), 1) - Tiefonenap] = EIV (1 V 120) A T2i01), (£ V 120) A T2041) * Litefononm])]
= E[V(x((1 V 120) A t2i11), (1 V T21) A T2i41)]
— E[V(x((t V 120) A T2i1), (£ V 12) A T2ig1) - Ly <y
— ETV(x((t V 120) A t2i41), (1 V 12) A T2i41) - Lipory)]
= E[V(x((1 V t2i) A T2i41), (1 V T20) A T2i41)]
— E[V(x(12:), 121) - Ly <121]

— E[V(x(t2i41), T2i4+1) * Lyeain)] (A9)
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< E[V(X(’Ezi), ’Ez,')] — OC](|X(‘E2,'|) - Plt <1y}

— o (|x(t2i411) - P{t > 241}

<o (Oﬂ_l (d}{(||v||oo) +dy,, <f1>113 ||2(I)Z(Z)T||>)>
_a (or‘ (dx(nvnoo) +dy, (sgg ||2<r)z(rf||>))
CPlr<tyU{r > 141}

Pl o ) 3 (a-l (dx(nvnoo) +dy, (sgg ||2<z)z(r)T||)))

+ o <a1 (dx(l Vlla0) + d,e @g ||2(r)2(r)T||>)>
— oy | (dx(nvuoo) +dy, <§1;13 ||2(r)2(z)T||>))

< Pl € [t i)} - o0 (orl (dx(nvnoo) +dy, (gg ||2(t)2(r)T||)))
+ o (a-‘ (dx(l Wlloo) + d2, (Stglg ||2(r)2(z)T||>))

Noticing that ¢ € (12,41, T2i+2) implies x(7) € 4, we have

o0
Z E[V(x(2), Z)I{f6(12f+1,72/+2)}]
i=0

<>t e G - (o (i + iz (swpizozen) )| @

i=0
Thus, by (A6), (A8)-(A10) one can obtain

EV(x(rv ), v 1)]<2u (oc1 <d;{(| Vlloo) + dy (SHIOD IIZ(Z)Z(I)TII) >) (ALT)

Recalling that V'(x, ¢) is nonnegative, we have
EV(x(tv 1)tV

2 E[V etV 21,V T1) - iy ovny v = 8o (dMll) - (sup s o IEO 0T D))

> {5 (cxz <a1 (dx(IIVI ) + <§1>uoo =) |) ) ) )}

. P{ V(x(tVv 1)),V 11)=0 <a2 (al <dx(| Vlloo) + 2, <su18 IZ(H)=(0)T) |) ) )> } (A12)
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This together with (A11) gives

P{ V(x(t V), 1V )=d <062 (otl <d;((| Vlloo) + d, (Sulg IIZ(I)Z(I)TH) ))) }

< 200 (drIVll0) + i (5up0 IZOZOTID) _
0 dx(1Y]loo) + i (Sup= [ZOE(D D))

(A13)

where ¢” € (0, 1) can be made arbitrarily small by an appropriate choice of § € # . Thus, by (4)
and (A13), we have

P{ NOZHE (5 (otz (otl <dX(IIVI|oo) + dy,, <SU1O IIZ(I)Z(I)TH))))) } 21— (Al4)
=0

Let (s) = o7 ' (0l (2dx(5))))) and 7,,(s) = o' (3(oa(2~'(2dy,,(5))))). Then, by simple
calculations, it can be verified that for any >0, xq € £\{0},

P{ (1< B0l 1)+ 71 o) + 72 (sgg ||2(z)2<r)T||) }

>p{|x(z)| <B(xol, 1) + o7 (5 <ocz (fxl <dx(IIVI|oo) + dy,, (igg IIZ(I)E(I)TH))))) }

> P{{|x(l At < B(x0l, )}

U{Ix(t vo)l<op! (5 (cxz (oc_1 (d}:(IIVIIoo) + dy,, <§1>113 IIZ(f)Z(f)T“))))) }}

Combining this with (A5) and (A14) leads to

P{ Ix(D < B(Uxol, 1) + 7(I1vllso) + 74 <Sl>1%) IZ()Z(0)"| |) }
>max{l —¢,1 —¢"}

=1—min{c,"}=1—¢ V=0, xy € %0} (A15)

Case 2: xo € #\{0}. In this case 7; = 0 a.s.
When ¢t > 0, P{t € (t1,00)} = P{t € (0,00)} = 1. Following the proof of Case 1, we know that
(A14) still holds, and then,

P{|x(r)| < B0l )+ 7(11¥110) + 7o (fgg ||2(z>2<z)T||) }

= P{|x(r>| <B(xol, 0) + o (é (az (a—‘ (dx(nvnoo) + dy, (3313 ||z(r)2(z)T||))>)) } (A16)
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= p{ise e < g+ (o (vt + an, (swpizozomi) ) )) ) |
>P{|x(z V) <op! (5 (az <oc“ (dx(IIVIIoo) +dy, (Sug IIZ(I)Z(’)T“»))) }

>1-¢
When 7 = 0, by the definition of the set 4 and the definition of the function y, we obtain
P{ 1x(0)] < B(1xol, 0) + y(1V]lo0) + i (fl;lg IZ(0)Z(0"] I) }
ZP{IX(O)I <P(IVlleo) + 7 (f‘;%’ IIZ(t)Z(t)TH) } =1
which implies
P{IX(O)I <B(xol,0) + 7(vlleo) + (fl;lg IIZ(Z)Z(I)TH) } =1 (ALT)
Thus, by (A16) and (A17), we have
P{IX(Z)I <Bxol, 1) + 7(IVlloc) + 71 (g}g IIZ(t)Z(t)TH) } 21—c V=20, xo € 2\{0} (AlB)
In conclusion, by (A15) and (A18), we have
PLI01< k.0 -+ 70011 + 3, (sup IZOZOTIT) | 21— € ¥r=0, 30 € RY(0)

By causality, we obtain

P{IX(1)|<B(IXOI,I)+V( sup M) w( sup ||z(s>2<s)T||>}>1—e Vi>0, x € R'\0)

0<s<t 0<s<t

The proof is complete. O

APPENDIX B: PROOF OF LEMMA 1

As shown in Step 1 of Section 5, Lemma 1 holds with k£ = 1. Now, we demonstrate Lemma 1 by
induction. Assume that Lemma 1 is true for Step k — 1, we will show that Lemma 1 is still true
for Step k. For this purpose, consider the following function:

1 2

Viie= Vi +Wzk
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where B
Zk =Xk — P 1(Xk—1), Py = —Lbp_1zk—y

Zko1 = Xp—1 + Lbg_aX¥p_n + L?bg_abp_3¥p—3 + -+ + L" by _oby_3 - b1 %

Then, it follows from (11) that

. oz
dzi = | X1 + L¥ager + Lbe_y <Z kel (xj+1 + I/ a]el)>
Jj=1
k-1 A .
= | %1 + Lrager + ZLk_'/bk—l bz — Lbjzj + L ajer) | de
=1
=[Xke1 + Lkaksl + Lkilbk_l «oobi(zy — Lbyzi+Layey) + Lkizbk_l ceebo(z3 — Lb222+L20281)
+ o4+ Lbi_1(zx — Lbj_1zj—1 + Lkilak_lsl)] dt
= (%1 + Lrdeer + Lrdpyzy + LV djozy + -+ - + Lejgezi) dr
where

di =ap + bt -+ -bray + by -+ -brao + -+ + b_1ap
det = — by -+ biby
dip =bg—1---b2by — b1 -+ - babs
dij =bj_1---bibj_y —bi_y---bib;, j=3,...k—1
ik = by

Thus, by 1t6 formula and Young inequality, we obtain

LV =LVt + 50— 26t + Lodrer + Lrdpyzy + L djaza + - - - 4 Ldgezi)

1
[2k=2
1 1
S LVt + oy 2kt + i) + 2k Lk Sdier +—— 772 daz1

1 1
+ dezzz ot s dkkzk)

1 d; a2,
< LV +mzk(zk+l + ¢ + <4L2’< zi +le> + <4L2/~ 3Zk+LZI)

diy 22 3 iy 2 L 1 dor 22
T\t ) T T qpars A T s fher | T s Ak

1 1 |&  d diry J
=L Vit + o 2t + dp) + 2 el £ g Tt T
2 2 1 2 1 2
+L8]+LZI+ZZZ+.'-+WZ](—1 (Bl)
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This together with (22) leads to

K2l %l
LVi< — (L~ |IPIP) — 2nC, — kL]el? + 2nC, ( N e

k—
— (2nL — 4nC,b? — kL)z> Z L2/ S[(n+j— k+ DL — 4nC.b71z;
=2

4nC, 2 1 1
+sz 2 %k +4sz 3 Z +L2k 5 2k(Ziee1 + )
1 gl/zc d;?l dlg,k—l |X k+1|
+L2k3k 4+T " 4 + 2nC, N
1, 1 5
+222+"'+L2k_5'zk_1 (Bz)

Notice that

|xk+1| |Zks1 + ¢k|2 4nCeZ%+1 4nCe¢i
2I1C€ < 2n C .2k S .2k + L2k
1 L7z, L,y 1

Zk=

2
ZkZk41 S 4144 12k—3 4] 2k—1 [2k=3 Zk

[2k—2

Then, by (B2) we have*

|[Xxral® %)
LVi< —[0(L—||PI*) — 2nC. — kL]je)* + 2nCe( L’;Ziz +o 5
k—1
— (2nL — 4nC,b} — kL)z3 — Z T3zl —k+ DL —4nC nka
Jj=
L Ld} Ld}
Zk ¢k+4nCsz+sz+— Kz (B3)

) 4 4

[2k—2

*When k = n, zx;, = 0 in (B1), we have
n—1
1 )
LV, < —[0(L - ||PIP) — 2nC, — nL)je* — (nL — 4nCob})z> — ZZ T U+ DL - 4nC.b71z;
=

1 1

+ o 2l + Lba—mal+ L2+t s 5 A
where b, =n+4nC, + 1 /A + d2 /4 + d% /4 + - + A2, /4 don.
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Ldyy e 4nCeziyy | 4nCody
t—y at Ldizi + Lz | + A2k J AT
1
+rAt s A k=2 -]

Take the virtual control law

¢ = —Lbpzi, k=2,...,n—1

where

b +4c+1+d2+d + +d" tdy+1, k=2 1
k=N n Z 2 4 4 ek =4Z,...,Nn
Then, it follows from (B3) that
PVis — 6L — |PIP) — 20Co — kL6 + 2nC, (22l Ll
kX _[( _|| || )_ nC, — ]|8| + 2n e L2k+2 + - 2L2,172

k
1 .
— (@2nL —4nC,bi — (k+ L)z = > Tl +j— kL — 4nC.b3)z;
Jj=2

2
Zii 4nC, ,

Tk Tk Gk T A

The proof is complete. O
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